

SQL COURSE

Sednove

Presented by
Xavier Bonifay

2015-08-07

TABLE OF CONTENT

● Select Structure
● IF, IFNULL, String functions, Date functions, Number functions
● Order By, Group By
● Joins
● UNION, INTERSECT, MINUS,
● Sub-queries
● Views
● Indexes
● Constraints
● Optimizing Queries

SQL-Course

SELECT STRUCTURE

STRUCTURED QUERY LANGUAGE

I want to select row data and calculated data
From different data sources
Where some conditions are met
Regrouping rows for calculation purposes
Ordering the output in a certain way.

SELECT columns, functions(columns)
FROM tables, views, (sub-queries)
WHERE conditions
GROUP BY columns
ORDER BY columns, functions(columns);

SQL-Course

IF, IFNULL, STRING, DATE, NUMBER

Operators: = != > < <> LIKE IN BETWEEN IS NULL

IF (Expression, THEN, ELSE): IF(A=B,C,D)
IFNULL(column A, column B): if column A is null then replace the value with
column B

String functions: https://mariadb.com/kb/en/mariadb/string-functions/
Cast, Concat, Instr, Length, Lower, Lpad, Replace, Rpad, Substr, Upper

Date functions: https://mariadb.com/kb/en/mariadb/date-and-time-functions/
Adddate, Date_format, Dayofweek, Last_day, Sysdate, Week, Weekday, Year

Number functions: https://mariadb.com/kb/en/mariadb/numeric-functions/
Mathematical functions, Ceil, Floor, Greatest, Least, Sign, Round, Truncate

SQL-Course

https://mariadb.com/kb/en/mariadb/string-functions/
https://mariadb.com/kb/en/mariadb/date-and-time-functions/
https://mariadb.com/kb/en/mariadb/numeric-functions/

ORDER BY, GROUP BY

ORDER BY column_name, function(column_name), 1 DESC/ASCE

GROUP BY: To use only if we have group by functions in the SELECT!

● Group By functions: SUM, MAX, MIN, COUNT, AVG, STD
● In the group by, ONLY put the columns which appear in the SELECT

and not used within a group by function.

SQL-Course

JOINS

Simple join: data must exists in the 2 tables:

FROM tableA
JOIN tableB on tableA.PK = tableB.FK

Outer join: data could not exists in the table on the left (or on
the right)

FROM tableA
LEFT OUTER JOIN tableB on tableA.PK = tableB.FK

SQL-Course

UNION, INTERSECT, MINUS
Combine two or more selects in one result. Used to ADD the
results, get the common part or remove the results of the 2nd
select from the first one.

SELECT colA as R1, colB as R2 From TableA
Where conditionA
UNION
SELECT colC as R1, colD as R2 From TableB
Where conditionB
ORDER BY 2, 1

Same number of columns, same types, give same aliases
ORDER BY at the end.
Note: UNION gives a unique result, UNION ALL gives all rows
even if they are duplicated

SQL-Course

SUB-QUERIES
A sub-query is a Select inside another select
1)At the SELECT level: Identical to call a function that returns one

value for each row:
● SELECT (Select max(sale_date) from sales), employee_name

from employee;
2)At the FROM level: Identical to call a View that returns multiple

rows:
● SELECT employee_name, sales_date

FROM employee, (select sales_date, emp_code from sales)
● WHERE employee.emp_code = sales.emp_code;
3)At the WHERE level: to validate a condition from another table:
● SELECT employee_name

FROM employee
WHERE emp_code in (select emp_code from sales);

SQL-Course

VIEWS
Define a Select, store the select in the database and use it as a table
The result of the view is calculated when we use the View.

CREATE VIEW ViewName AS SELECT columns FROM tables
WHERE conditions;

Select columns
FROM tables, ViewName
WHERE conditions

We can only use INSERT, DELETE, UPDATE on a view made on a
single table.

SQL-Course

INDEXES
Indexes are used to accelerate queries.

Indexes reduce all other transactions: INSERT, UPDATE, DELETE

Wrong indexes can slow down queries.

Indexes use a lot of disk space.

Only create indexes based on the needs of the queries.

CREATE INDEX IND1 ON TABLE1 (COL1, COL2, COL3);

1)SELECT * FROM TABLE1 WHERE COL1 = xxx AND COL2 = yyy
2)SELECT * FROM TABLE1 WHERE COL2 = xxx AND COL3 = yyy
3)SELECT * FROM TABLE1 WHERE substr(COL1,1,2) = xxx AND COL2

= yyy

1) can use IND1 but 2) and 3) no
SQL-Course

CONSTRAINTS

● NOT NULL

● PRIMARY KEY:
 CREATE TABLE Table_1 (column_1 SMALLINT, column_2
VARCHAR(5), CONSTRAINT constraint_1 PRIMARY
KEY(column_1,column_2) NOT DEFERRABLE);

● FOREIGN KEY: CREATE TABLE Table_2 (column_1 SMALLINT
CONSTRAINT constraint_1 FOREIGN KEY REFERENCES Table_1
NOT DEFERRABLE, column_2 CHAR(5));

● CHECK: CREATE TABLE Table_1 (column_1 DATE CHECK
(column_1 = CURRENT_DATE));

SQL-Course

OPTIMIZING QUERIES
In the FROM:
● put the big tables first and the small tables after
In the WHERE:
● Follow the conditions based on your table list;
● Put the more restrictive condition at the end;
● Do not use OR: prefer UNION;
● Do not use IN: prefer EXISTS (NOT EXISTS);
● Try not to use subqueries;
● If you need subqueries, use subqueries returning one row and use =,

not IN;
● Use DISTINCT instead of GROUP BY;
● Use only GROUP BY if you use GROUP functions;
● Do not return columns that you do not need (Subqueries or in the main

select);
● Do not use functions on indexed columns;
● Be sure to have indexes on primary keys and foreign keys (or

constraints);
● Index all significant columns used in your query and try to combine

columns in one INDEX
SQL-Course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

